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Abstract
In classical mechanics a transformation in phase space is said to be canonoid if
it maps only some Hamiltonian systems into Hamiltonian systems. Once
canonoid transformations are considered, these systems can be classically
described by means of Lagrangians or Hamiltonians other than the conventional
ones. In this context, a basic role is played by the dynamical invariants
generated through the Poisson brackets of the new independent variables
in phase space. Here we obtain the explicit form of special canonoid
transformations of the polynomial type for systems which can be classically
described by an equation of the parametric oscillator type and discuss some
algebraic properties shown by the associated dynamical invariants.

PACS number: 45.20.Jj

1. Introduction

In recent years, interest has been attracted by the theory of dynamical systems admitting
alternative formulations (see, e.g., [1–4]). The non-uniqueness of Lagrangians and
Hamiltonians associated with a given classical dynamical system may be discussed in
connection with the introduction of particular transformations in phase space. As is known,
there exist in fact transformations in phase space other than the canonical ones that preserve the
Hamiltonian character for the equation as well, but only for a restricted class of Hamiltonians
(see, e.g., [5]). They are commonly referred as canonoid transformations [5–11]1. Besides
the fact that a relation with the existence of non-Noether symmetries and constants of motion
has been pointed out (see, e.g., [3, 11]), a full understanding of the meaning and the properties
of canonoid transformations and alternative Lagrangians and Hamiltonians is still missing

1 In some papers the canonoid transformations have been alternatively called ‘canonical transformations’ while the
mappings preserving the canonical Poisson brackets have been indicated as ‘Hamiltonian independent canonical
transformations’ (see, for instance, [8, 9]).
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at the present and efforts have to be done by trying to accumulate significant case studies.
The results obtained in [12] concerning polynomial canonoid transformations for generalized
time-dependent oscillators provide us a reason of interest which is pertinent to this respect.
The aim of this communication is, indeed, to pursue an explicit analysis of dynamical variables
for parametric oscillators through canonoid transformations of the type considered in [12].
Precisely, we would like to pay a particular consideration on the algebraic properties, as
seen in the original phase space, of constants of motions arising from polynomial canonoid
transformations. Our main motivation is that while all the Lagrangians and Hamiltonians
which can be obtained generate the same classical equation of motion and give rise to the
same basic classical dynamics as the standard parametric oscillator, it is unclear how to exhibit
their possible features at the quantum level. On the other hand, it has been discussed in the
literature that paying attention to invariants and the underlying dynamical algebras may reveal
itself as a successful strategy in order to gain a better understanding of properties of dynamical
systems and to proceed towards their quantization (see, e.g., [13–17]). After providing explicit
formulae for time-dependent coefficients characterizing the canonoid transformations for the
parametric oscillator, Poisson brackets among invariants will be scrutinized in the lowest order
cases.

The outline of the paper is as follows. In section 2 some basic preliminaries are expounded
which regard the concept of canonoid transformation for the parametric oscillator. The
formulae for invariants in the cases n = 2, 3, 4 (n represents the order defining the polynomial
transformations under investigation; see equation (2.9)) are explicitly obtained in section 3.
Among the developments inherent to the case n = 3, it is worth mentioning a proposition
presenting a Lie algebra of the sl(2, R) type whose elements are just the invariants. Section 4
is devoted to a discussion and to concluding comments.

2. Canonoid Hamiltonians for the parametric oscillator and associated invariants

In this section, we shall present polynomial canonoid transformations for parametric
oscillators. As we have previously recalled, a transformation in phase space is said canonoid if
it maps only some Hamiltonian systems into Hamiltonian ones. In [8] the following theorem
relating the possible canonoid transformations of a one-dimensional system has been presented
(a generalization to mechanical systems with N degrees of freedom has been discussed in [9]).

Theorem 1. A mapping (q, p) → (Q, P ) carries a given canonical description of a one-
dimensional system into another canonical description if and only if the Poisson bracket
{Q,P }q,p = ∂Q

∂q
∂P
∂p

− ∂Q

∂p
∂P
∂q

is an invariant (constant of the motion) of the system under

consideration: d
dt

{Q,P }q,p = 0.

The problem of obtaining Hamiltonian functions for the parametric oscillator which are
linked by a canonoid transformation on phase space can be therefore tackled by resorting to
this theorem. As is well known, parametric oscillators are classically described by an equation
of motion of the type

q̈ + ω2(t)q = 0, (2.1)

which can be derived from the Lagrangian

L1 = q̇2

2
− ω(t)2q2

2
, (2.2)

while the associated Hamiltonian is of the form

H1 = p2

2
+

ω(t)2q2

2
, (2.3)
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where p = ∂q̇L1 = q̇ denotes the momentum canonically conjugate to the coordinate q. In
[3] it was proven that the Lagrangian function Ln = Ln(q, q̇, t) expressed by

Ln =
n∑

j=0

1

n − j + 1
aj q̇

n−j+1qj + (ȧn − ω2an−1)
qn+1

n + 1
(2.4)

describes the parametric oscillator (2.1) provided that

ȧ0 = −n − 1

n
a1, (2.5)

ȧj = (n − j + 1)ω2aj−1 − (j + 1)
n − j − 1

n − j
aj+1, (2.6)

with j = 1, 2, . . . , n − 1. Indeed, under such hypotheses it turns out that

d

dt

∂Ln

∂q̇
− ∂Ln

∂q
= In(t)[q̈ + ω2q], (2.7)

where In(t) is a time-dependent constant of motion (i.e. dIn

dt
= 0), given by

In(t) = ∂2Ln

∂q̇2
=

n∑
j=0

(n − j)aj q̇
n−j−1qj . (2.8)

Lagrangians (2.4) basically arise by performing special canonoid transformations on the
original parametric oscillator (2.2). They are the transformations (q, p) → (Q, Pn) on phase
space under which the coordinate in configuration space is preserved while Pn = ∂Ln

∂q̇
is a

polynomial of degree n in the variables q and p, i.e.

Q = q, Pn =
n∑

j=0

ajp
n−j qj . (2.9)

We observe that the relation

{Q,Pn}q,p = ∂Pn

∂p
=

n∑
j=0

(n − j)ajp
n−j−1qj ≡ In(t) (2.10)

can be deduced (hereinafter, the quantity In will be understood as evaluated in the original
phase space (q, p), where q̇ = p). Hence, the special canonoid transformation where Q = q

and Pn defined by (2.9), also named fouled transformation in the literature (see references
quoted in [6]), satisfies the condition of theorem 1. Before we proceed, we point out that at
this stage the functions an(t) remain unknown since no functional dependence from the other
aj ’s (j = 0, . . . , n − 1) can be inferred from the compatibility conditions (2.5)–(2.6). This
freedom can be exploited to make advantageous choices. (See also the discussion performed
in [6].)

To each of the Ln’s given by equation (2.4) there corresponds a (canonoid) Hamiltonian
Kn = Kn(Q,Pn) which can be derived through the Legendre transformation Kn = Pnp − Ln

associated with the mapping (q, p) → (Q, Pn) of the form (2.9). The dynamical description
relying on the adoption of the independent variables Q and Pn should therefore proceed through
the analysis of the Hamilton equations

∂Kn

∂Pn

= Q̇,
∂Kn

∂Q
= −Ṗ n. (2.11)
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Here we notice that these canonoid Hamiltonians Kn can be given in the form

Kn =
n∑

j=0

n − j

n − j + 1
aj [p(Q,Pn)]

n−j+1Qj − [ȧn − ω(t)2an−1]
Qn+1

n + 1
(2.12)

where p(Q,Pn) is obtained by inverting the transformation (2.9). Conditions (2.5)–(2.6)
ensure indeed that ∂Kn

∂Pn
and − ∂Kn

∂Q
coincide with the time-derivatives of Q and Pn, respectively.

3. Algebraic properties of classical invariants for the canonoid Hamiltonians Kn

In this section, after explicitly deriving the solutions to equations (2.5)–(2.6) defining the
canonoid transformations (2.9) for the parametric oscillator, we shall be mainly concerned
with algebraic properties of the related invariants. Precisely, we shall discuss in some detail
the cases n = 2, 3, 4 and we shall focus on the Poisson bracket among distinguished invariants
which generally can be cast as (from now on, the Poisson brackets on the phase space (q, p)

will be simply denoted as {, })
{
I (ρ)
n , I (τ)

n

} = (n − 1)

n∑
k,j=0

(n − j)(n − k)(j − k)a
(ρ)

j a
(τ)
k p2n−j−k−3qj+k−1, (3.1)

where I
(ρ)
n denotes the invariant constructed in terms of a given set

{
a

(ρ)

j

}
of independent

solutions to equations (2.5)–(2.6). In doing so, we make here the crucial step to recognize that
solutions to the system (2.5)–(2.6) are generated by functions a0 of the type

a0 = σn−1

n
2 −1∑
j=0

[
αn,j+ 1

2
cos θj+ 1

2
(t) + βn,j+ 1

2
sin θj+ 1

2
(t)

]
, (3.2)

for n even, and

a0 = σn−1

(n−1)

2∑
j=0

[αn,j cos θj (t) + βn,j sin θj (t)], (3.3)

for n odd, with

θξ (t) = ξ

∫ t dt ′

σ(t ′)2
. (3.4)

The (generally) time-dependent quantity σ introduced above satisfies the Ermakov equation
[18]

σ̈ + ω2σ = 1

4σ 3
. (3.5)

Once n is fixed, the general structure (3.2)–(3.3) for a0 allows us to distinguish n distinct
independent solutions a

(i)
0 each obtained by setting to zero all the αn,j , βn,j but one (which

will be conventionally chosen to be 1). Introduction of each of these a
(i)
0 into (2.6) and all the

other fundamental formulae enables us to obtain n independent invariants, Lagrangians and
Hamiltonians. These quantities have some symmetry properties (because of the opposite signs
introduced by the derivatives of the sine and the cosine functions). It should be even pointed
out that, as long as n increases, higher order derivative terms show up in general formulae
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for invariants and Hamiltonians which can be handled by properly resorting to the Ermakov
equation (3.5) and, eventually, to the Ermakov invariant2

I0 = (pσ − qσ̇ )2 +
q2

4σ 2
. (3.6)

Note that when one restricts oneself to the case of a conventional harmonic oscillator, then the
Ermakov invariant basically provides the Hamiltonian for the system. Indeed, when ω = λ =
const. the solution to equation (3.5) simply reads σ = 1√

2λ
so that the quantities 2(σp − σ̇ q)

and q

σ
clearly reduce to

√
2
λ
p and

√
2λq, respectively. Hence,

H0 = 1
2 (p2 + λ2q2) = λI0|ω=λ. (3.7)

Before moving to the next section, for the reader’s sake we point out that the notation
employed hereinafter can be summarized by means of the following two simple prescriptions:
(a) objects denoted as f

(cos)
n,ξ and f

(sin)
n,ξ shall be used to characterize the form assumed by

the generic dynamical variable f after it has been evaluated starting from the independent
solutions for a0 of the type a

(cos)
0,n,ξ = σn−1 cos θξ and a

(sin)
0,n,ξ = σn−1 sin θξ , respectively;

(b) f +
n,ξ and f −

n,ξ shall be used to denote components of f
(cos)
n,ξ along the terms cos θξ and sin θξ ,

respectively.

3.1. Case n = 2

For n = 2, equation (2.4) gives

L2 = 1

3
a0q̇

3 +
1

2
a1q q̇2 + a2q̇q2 + [ȧ2 − ω2(t)a1]

q3

3
. (3.8)

The classical invariant In (see equations (2.8), (2.10)) becomes

I2(t) = 2a0p + a1q. (3.9)

The coefficients a0 and a1 are expressed by solutions to equations (2.5) and (2.6), which now
read

ȧ0 = − 1
2a1, ȧ1 = 2ω2(t)a0. (3.10)

So, a0 obeys the equation for a parametric oscillator with frequency ω, ä0 + ω2a0 = 0. Two
independent solutions for a0 are therefore

a
(cos)
0,2, 1

2
= σ cos θ 1

2
(t), a

(sin)

0,2, 1
2

= σ sin θ 1
2
(t), (3.11)

where σ is defined via (3.5) and θ 1
2
(t) = 1

2

∫ t
σ−2 dt ′, while the corresponding two independent

solutions for a1 take the form

a
(cos)
1,2, 1

2
= σ̇ cos θ 1

2
(t) − 1

2σ
sin θ 1

2
(t), a

(sin)

1,2, 1
2

= σ̇ sin θ 1
2
(t) +

1

2σ
cos θ 1

2
(t). (3.12)

It turns out that the invariants in the case n = 2 read
I

(cos)
2, 1

2

I
(sin)

2, 1
2


 =

(
cos θ 1

2
(t) sin θ 1

2
(t)

sin θ 1
2
(t) − cos θ 1

2
(t)

)
I +

2, 1
2

I−
2, 1

2


 , (3.13)

2 The invariant (3.6) for a time-dependent oscillator equation (2.1) has been obtained by Ermakov in [18]. Later,
this classical result has been rederived and rediscovered several times by different scientific communities by making
use of different methods. For this reason, the quantity (3.6) can be also found referred as the Milne-, Pinney-, or
Courant-Snyder invariant (see, e.g., [19, 20] and discussion in [21]).
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where

I +
2, 1

2
= 2(σp − σ̇ q), I−

2, 1
2

= q

σ
. (3.14)

Remark that
[
I

(cos)
2, 1

2

]2
+

[
I

(sin)

2, 1
2

]2
basically provides us with the Ermakov invariant:[

I
(cos)
2, 1

2

]2
+

[
I

(sin)

2, 1
2

]2 = 4I0. (3.15)

If we consider the Poisson brackets among invariants, we straightforwardly recognize that{
I

(cos)
2, 1

2
, I

(sin)

2, 1
2

} = 2, (3.16)

{
I

(cos)
2, 1

2
, I0

} = I
(sin)

2, 1
2

, (3.17)

{
I

(sin)

2, 1
2

, I0
} = −I

(cos)
2, 1

2
. (3.18)

Hence {
I

(cos)
2, 1

2
, I0

}2
+

{
I

(sin)

2, 1
2

, I0
}2 = 4I0. (3.19)

We shall argue later on the generalization of this simple result in cases corresponding to higher
values of n.

Let us focus on the case of the standard harmonic oscillator, ω(t) = λ = const.
Equation (3.5) now admits the solution σ = 1√

2λ
and so one has θ 1

2
= λt . One can write down

the general solution q and the momentum p = q̇ of the harmonic oscillator with constant
frequency λ in terms of the two invariants following from equation (3.13), i.e.

q = 1√
2λ

(
I

(cos)
2, 1

2
sin λt − I

(sin)

2, 1
2

cos λt
)
, p =

√
λ

2

(
I

(cos)
2, 1

2
cos λt + I

(sin)

2, 1
2

sin λt
)
. (3.20)

The conventional Hamiltonian for the time-independent harmonic oscillator can be thus
expressed in terms of the invariants according to (see (3.15))

H0 = 1

2
(p2 + λ2q2) = λ

4

{[
I

(cos)
2, 1

2

]2
+

[
I

(sin)

2, 1
2

]2} = λI0|ω=λ. (3.21)

3.2. Case n = 3

For n = 3, equations (2.4), (2.9) provide us with

L3 = 1

4
q̇4 +

1

3
a1q̇

3q +
1

2
a2q̇

2q2 + a3q̇q3 + [ȧ3 − ω2(t)a2]
q4

4
. (3.22)

From (2.5)–(2.6) we have

ȧ0 = −2

3
a1, ȧ1 = 3ω2a0 − a2, ȧ2 = 2ω2a1. (3.23)

These equations can be manipulated to give ˙̈a0 + 4ω2ȧ0 + 4ωω̇a0 = 0, whose independent
solutions can be written in the form

a
(cos)
0,3,1 = σ 2 cos θ1(t), a

(sin)
0,3,1 = σ 2 sin θ1(t), a

(cos)
0,3,0 = σ 2 (3.24)

where σ obeys the Ermakov equation (3.5) and θ1 = ∫
dt
σ 2 . For n = 3, equation (2.10) implies

I3(t) = 3a0p
2 + 2a1pq + a2q

2. We thus get the following invariants:(
I

(cos)
3,1

I
(sin)
3,1

)
=

(
cos θ1(t) sin θ1(t)

sin θ1(t) − cos θ1(t)

) (
I +

3,1

I−
3,1

)
, (3.25)
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with

I +
3,1 = 3

2σ 2
[2σ 4(p2 + q2ω2) − 4pqσ̇ σ 3 + q2(2σ̈ σ 3 + 2σ̇ 2σ 2 − 1)], (3.26)

I−
3,1 = 3q

σ
(pσ − qσ̇ ) , (3.27)

and

I
(cos)
3,0 = 3[(p2 + q2ω(t)2)σ 2 + q(qσ̈ − 2pσ̇ )σ + q2σ̇ 2] (3.28)

(note that I
(cos)
3,0 = I +

3,1 + 3q2

2σ 2 ). It is worth noting that the Ermakov invariant arises from

[
I

(cos)
3,1

]2
+

[
I

(sin)
3,1

]2 = 9

[
(pσ − qσ̇ )2 +

q2

4σ 2

]2

= 9I 2
0 (3.29)

(compare it with equation (3.15)). By focusing on the Poisson brackets{
I

(i)
3,ξ , I

(j)

3,ξ ′
} = 18a

(i)
0,3,ξ ȧ

(j)

0,3,ξ ′p
2 + 18ä

(i)
0,3,ξ a

(j)

0,3,ξ ′pq

+ 9ȧ
(i)
0,3,ξ

(
ä

(j)

0,3,ξ ′ + 2ω2a
(j)

0,3,ξ ′
)
q2 −

(
i ←→ j

ξ ←→ ξ ′

)
(3.30)

(i, j = sin, cos and ξ, ξ ′ = 0, 1), we are in the position to remark an interesting algebraic
property owed by the set of invariants I

(cos)
3,1 , I

(sin)
3,1 , I

(cos)
3,0 . Precisely, the following proposition

emerges straightforwardly.

Proposition 2. The invariants I
(cos)
3,1 , I

(sin)
3,1 , I

(cos)
3,0 satisfy the sl(2, R) algebra{

I
(cos)
3,1 , I

(sin)
3,1

} = 6I
(cos)
3,0 ,

{
I

(sin)
3,1 , I

(cos)
3,0

} = −6I
(cos)
3,1 ,

{
I

(cos)
3,0 , I

(cos)
3,1

} = −6I
(sin)
3,1 .

(3.31)

Before concluding the subsection, note that the Ermakov equation (3.5), as well as the
explicit form of the Ermakov invariant I0, can be exploited to simplify I +

3,1, and thus I
(cos)
3,0 ,

according to3

I +
3,1 = 3I0 − 3q2

2σ 2
, I

(cos)
3,0 = 3I0. (3.32)

We point out that such a procedure is crucial, and needs to be applied recursively in fact, in
order to have rather compact objects in the higher n cases, where higher order derivatives of
σ and higher powers of σ̇ show up in the formulae.

3.3. Case n = 4

In this case we have

a1 = − 4
3 ȧ0, a2 = (ä0 + 3ω2a0), a3 = −4ω ω̇a0 − 14

3 ω2ȧ0 − 2
3˙̈a0 (3.33)

so that

I4 = 4a0p
3 − 4ȧ0p

2q + 2(ä0 + 3ω2a0)pq2 − (
4ω ω̇a0 + 14

3 ω2ȧ0 + 2
3˙̈a0

)
q3. (3.34)

3 A different way to simplify formulae in concrete analysis may be through the introduction of a function F(t)

defined via F(t) = σ̇ 2 + 1
4σ 2 . The function F can be next specified compatibly with equation (3.5) as follows. If

σ̇ �= 0, then we can exploit the relation σ̇ 2 + 1
4σ 2 + ω2σ 2 = F2(t), where F2(t) = 2

∫
σ 2ω ω̇ dt , thus obtaining

F(t) = F2 − ω2σ 2. In the case σ = const. (which is concerned with the case ω = λ = const) the function F should
instead be identified as F = ω2σ 2 = λ/2.
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Insertion of the four independent solutions for a0, namely

a
(cos)
0,4,ξ = σ 3 cos θξ , a

(sin)
0,4,ξ = σ 3 sin θξ , (3.35)

with

θξ (t) = ξ

∫ t dt ′

σ 2
, ξ = 1

2
,

3

2
, (3.36)

provides us with four different invariants, I
(cos)
4,ξ and I

(sin)
4,ξ . Precisely, it turns out that(

I
(cos)
4,ξ

I
(sin)
4,ξ

)
=

(
cos θξ (t) sin θξ (t)

sin θξ (t) − cos θξ (t)

)(
I +

4,ξ

I−
4,ξ

)
, (3.37)

where

I +
4,ξ = 4p3σ 3 − 12p2qσ̇ σ 2 + 6

[
σ̈ + ω2σ + 2

σ̇ 2

σ
− ξ 2

3σ 3

]
σ 2pq2

− 2

{
˙σ̈ σ 2 + 2σ̇ 3 +

[
6σ̈ σ + 7ω2σ 2 − ξ 2

σ 2

]
σ̇ + 2ω ω̇σ 3

}
q3, (3.38)

I−
4,ξ = 2qξ

3

{
6p2σ +

[
7σ̈ + 7ω2σ + 6

σ̇ 2

σ
− ξ 2

σ 3

]
q2 − 12pqσ̇

}
(3.39)

(
ξ = 1

2 , 3
2

)
. Once again, we can take into account the Ermakov equation and the Ermakov

invariant thus obtaining (after a cumbersome algebraic manipulation)

I +
4,ξ = (pσ − qσ̇ )

2

[
(1 − 4ξ 2)

q2

σ 2
+ 8I0

]
, I−

4,ξ = qξ

6σ

[
(1 − 4ξ 2)

q2

σ 2
+ 24I0

]
(3.40)

which easily shows that[
I

(cos)
4,ξ

]2
+

[
I

(sin)
4,ξ

]2 = 16I 3
0 . (3.41)

From{
I

(i)
4,ξ , I

(j)

4,ξ ′
} = 48a

(i)
0,4,ξ ȧ

(j)

0,4,ξ ′p
4 + 48ä

(i)
0,4,ξ a

(j)

0,4,ξ ′p
3q

+ 24
[
ȧ

(i)
0,4,ξ ä

(j)

0,4,ξ ′ + a
(i)
0,4,ξ

(̇
ä

(j)

0,4,ξ ′ + 4ω2ȧ
(j)

0,4,ξ ′
)]

p2q2

+ 16
(̇
ä

(i)
0,4,ξ + 6ω ω̇a

(i)
0,4,ξ

)
ȧ

(j)

0,4,ξ ′pq3

+ 4
[(

ä
(i)
0,4,ξ + 3ω2ȧ

(i)
0,4,ξ

)(̇
ä

(j)

0,4,ξ ′ + 7ω2ȧ
(j)

0,4,ξ ′
)

+ 6ω ω̇ä
(i)
0,4,ξ a

(j)

0,4,ξ ′
]
q4

−
(

i ←→ j

ξ ←→ ξ ′

)
(3.42)

(i, j = sin, cos and ξ, ξ ′ = 1
2 , 3

2 ), and by exploiting the Ermakov equation as well as the
Ermakov invariant, one gets{

I
(cos)
4,ξ , I

(sin)
4,ξ

} = 48ξI 2
0 (3.43)

and({
I

(cos)
4,ξ , I0

}
{
I

(sin)
4,ξ , I0

}
)

=
(

cos θξ (t) sin θξ (t)

sin θξ (t) − cos θξ (t)

) (
− q

σ

[
(1 − 4ξ 2)

3q2

4σ 2 + 8ξ 2I0
]

ξ(pσ − qσ̇ )
[
(1 − 4ξ 2)

q2

σ 2 + 8I0
]
)

. (3.44)

Equation (3.44) is more relevant as it appears at a first sight. Let us note, in fact, that by taking
the Poisson bracket of equation (3.41) first with I

(cos)
n,ξ and next with I

(sin)
n,ξ , and making use of

equation (3.43), we get{
I

(cos)
4,ξ , I0

} = 2ξI
(sin)
4,ξ ,

{
I

(sin)
4,ξ , I0

} = −2ξI
(cos)
4,ξ , (3.45)
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respectively. Clearly, the equations (3.44) and (3.45) can be easily shown to be equivalent.
Precisely, compatibility between equations (3.44) and (3.45) is achieved provided that

(1 − 4ξ 2)(9 − 4ξ 2)
q2

12σ 2
= 0.

Since the case n = 4 is concerned with either ξ = 1
2 or ξ = 3

2 , the above request is therefore
satisfied on shell (that is, when ξ takes one of the above-mentioned allowed values). We
detailed this point because it is instructive about a very typical situation which arises when
handling dynamical quantities in the presence of several values allowed for the ξ ’s.

The algebraic relations among the invariants I
(cos)
4,ξ , I

(sin)
4,ξ and I0 can be therefore expressed

by equations (3.43) and (3.45). Remark that the latter implies{
I

(cos)
4,ξ , I0

}2
+

{
I

(sin)
4,ξ , I0

}2 = 64ξ 2I 3
0 . (3.46)

4. Discussion

In this paper, fouled polynomial canonoid transformations (2.9) for the parametric oscillators
have been investigated. After analysing the basic structure of solutions for the differential
system for the time-dependent coefficients aj (t), some invariants have been obtained. Their
explicit knowledge enabled us to depict features which could not have been noticed otherwise.
Basically, we point out how the coefficients aj are related to the dynamics of the ‘original’
parametric oscillator, and thus to the associated Ermakov equation. The presence of a link is
somehow expected by construction, in principle. Interestingly, we have seen that, as long as
the order n of the polynomial canonoid transformation (2.9) increases, the net consequence is
that the time-dependent amplitude of each independent solution for a0 changes according to
powers of order n − 1 of the time-dependent amplitude of the original parametric oscillator
while the corresponding time-dependent phases differ by a proper proportionality factor
(equation (3.2)–(3.3)). For n = 2, the differential equation for a0 is just that of a parametric
oscillator with the same time-dependent frequency as the original one (see equation (2.1) and
(3.10)). A consequence of the fact that the general structure for a0 (and, hence, for the aj with
j = 1, . . . , n−1) is a linear combination of time-dependent sine and cosine terms is that, once
the dynamical invariants (2.10) (which depend linearly from these time-dependent functions)
are considered, one sees, in a sense, time-dependent rotation matrices acting on some basic
objects. In the cases of the Lagrangians a term linear (depending on p, q, σ, σ̇ ) with respect to
ȧn also enters in the matter. When an is chosen to be either constant or an = an(a0, . . . , an−1)

(and hence an = an(a0)), clearly even the alternative Lagrangians Ln can be seen in terms
of a particular time-dependent rotation. The explicit form of Lagrangians and, especially,
invariants have been given when n = 2, 3, 4. We have also investigated the Poisson brackets
among invariants attempting to express formulae in a meaningful form by letting the role
of the basic Ermakov invariant I0 be as more explicit as possible. Kind of clarification about
the meaning of the rotation matrix arises in terms of objects defined by suitable powers of
the basic Ermakov invariant I0. Equations (3.15)–(3.19), (3.29), (3.31), (3.32), (3.41)–(3.46)
show indeed that, when n = 2, 3, 4, one has[

I
(cos)
n,ξ

]2
+

[
I

(sin)
n,ξ

]2 = n2I n−1
0 ,

{
I

(cos)
n,ξ , I

(sin)
n,ξ

} = (n − 1)n2ξIn−2
0 , (4.1){

I
(cos)
n,ξ , I0

} = 2ξI
(sin)
n,ξ ,

{
I

(sin)
n,ξ , I0

} = −2ξI
(cos)
n,ξ , (4.2)

and therefore, {
I

(cos)
n,ξ , I0

}2
+

{
I

(sin)
n,ξ , I0

}2 = 4n2ξ 2I n−1
0 . (4.3)
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It would be rather tempting to conjecture that such relations hold in wider generality. We
checked that they hold even in the case n = 5. In such a case, a direct computation also shows
that

I +
5,ξ = 5I 2

0 − 5ξ 2 q2

2σ 2

[
(1 − ξ 2)

q2

12σ 2
+ I0

]
, (4.4)

I−
5,ξ = 5ξ

q

σ

[
(1 − ξ 2)

q2

6σ 2
+ I0

]
. (4.5)

Hence, the invariant associated to the case ξ = 0 is I5,0 = I
(cos)
5,0 = I +

5,0 = 5I 2
0 . We thus

wonder if a relation of the type

In,0 � I
(cos)
n,0 = nI

(n−1)/2
0 (4.6)

does generally hold when dealing with n odds and, in case, if it could have been deduced
alternatively.

The relevance of the proposition 2 (see equation (3.31)) relies on the fact that it
characterizes a dynamical algebra underlying the case n = 3. The result should be of interest
when moving towards the direction of quantization of the fouled canonoid Hamiltonians for
the parametric oscillator. Once alternative Hamiltonians for the parametric oscillators are
explicitly constructed thanks to (3.2)–(3.3), the forthcoming step in order would consist in
the study of their quantum mechanical aspects. Nevertheless, the possibility of handling
dynamical systems through alternative classical Lagrangians and, correspondingly, through
alternative classical Hamiltonians may open new scenarios and pose some questions. Clearly
everything is straight at the classical level, since alternative Lagrangians and Hamiltonians
give rise to the same equation of motion obtained ‘conventionally’. But at the quantum level
one may even wonder whether alternative Hamiltonians actually mimic dynamical systems
with some characteristics different from those endowed with standard ones. Shedding light
on cases regarding quantum oscillators represents indeed a step both due, because of their
relevance in the realm of physics, and useful, because of the feasibility of concrete experimental
tests. Nevertheless, this issue goes beyond our present scopes and will be considered
elsewhere.
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